Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(2): 23, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453737

RESUMO

Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.


Assuntos
Alcaloides , Benzilisoquinolinas , Corydalis , Benzofenantridinas , Corydalis/genética , Corydalis/química , Corydalis/metabolismo , Alcaloides/metabolismo , Extratos Vegetais/química
2.
Angew Chem Int Ed Engl ; 63(1): e202315844, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37963815

RESUMO

Valanimycin is an azoxy-containing natural product isolated from the fermentation broth of Streptomyces viridifaciens MG456-hF10. While the biosynthesis of valanimycin has been partially characterized, how the azoxy group is constructed remains obscure. Herein, the membrane protein VlmO and the putative hydrazine synthetase ForJ from the formycin biosynthetic pathway are demonstrated to catalyze N-N bond formation converting O-(l-seryl)-isobutyl hydroxylamine into N-(isobutylamino)-l-serine. Subsequent installation of the azoxy group is shown to be catalyzed by the non-heme diiron enzyme VlmB in a reaction in which the N-N single bond in the VlmO/ForJ product is oxidized by four electrons to yield the azoxy group. The catalytic cycle of VlmB appears to begin with a resting µ-oxo diferric complex in VlmB, as supported by Mössbauer spectroscopy. This study also identifies N-(isobutylamino)-d-serine as an alternative substrate for VlmB leading to two azoxy regioisomers. The reactions catalyzed by the kinase VlmJ and the lyase VlmK during the final steps of valanimycin biosynthesis are established as well. The biosynthesis of valanimycin was thus fully reconstituted in vitro using the enzymes VlmO/ForJ, VlmB, VlmJ and VlmK. Importantly, the VlmB-catalyzed reaction represents the first example of enzyme-catalyzed azoxy formation and is expected to proceed by an atypical mechanism.


Assuntos
Compostos Azo , Compostos Azo/química
3.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2298-2306, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282858

RESUMO

Tanshinones are one of the main effective components of Salvia miltiorrhiza, which play important roles in the treatment of cardiovascular diseases. Microbial heterogony production of tanshinones can provide a large number of raw materials for the production of traditional Chinese medicine(TCM) preparations containing S. miltiorrhiza, reduce the extraction cost, and relieve the pressure of clinical medication. The biosynthetic pathway of tanshinones contains multiple P450 enzymes, and the catalytic element with high efficiency is the basis of microbial production of tanshinones. In this study, the protein modification of CYP76AK1, a key P450-C20 hydroxylase in tanshinone pathway, was researched. The protein modeling methods SWISS-MODEL, Robetta, and AlphaFold2 were used, and the protein model was analyzed to obtain the reliable protein structure. The semi-rational design of mutant protein was carried out by molecular docking and homologous alignment. The key amino acid sites affecting the oxidation activity of CYP76AK1 were identified by molecular docking. The function of the obtained mutations was studied with yeast expression system, and the CYP76AK1 mutations with continuous oxidation function to 11-hydroxysugiol were obtained. Four key amino acid sites that affected the oxidation acti-vity were analyzed, and the reliability of three protein modeling methods was analyzed according to the mutation results. The effective protein modification sites of CYP76AK1 were reported for the first time in this study, which provides a catalytic element for different oxidation activities at C20 site for the study of the synthetic biology of tanshinones and lays a foundation for the analysis of the conti-nuous oxidation mechanism of P450-C20 modification.


Assuntos
Oxirredutases , Salvia miltiorrhiza , Vias Biossintéticas , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Salvia miltiorrhiza/química , Aminoácidos/metabolismo , Raízes de Plantas/genética
4.
Microb Cell Fact ; 22(1): 23, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737755

RESUMO

Benzylisoquinoline alkaloids (BIAs) are a type of secondary metabolite with clinical application value. (S)-stylopine is a special BIA which contains methylenedioxy bridge structures. CYP719As could catalyze the methylenedioxy bridge-formation on the A or D rings of protoberberine alkaloids, while displaying significant substrate regiospecificity. To explore the substrate preference of CYP719As, we cloned and identified five CyCYP719A candidates from Corydalis yanhusuo. Two CyCYP719As (CyCYP719A39 and CyCYP719A42) with high catalytic efficiency for the methylenedioxy bridge-formation on the D or A rings were characterized, respectively. The residues (Leu 294 for CyCYP719A42 and Asp 289 for CyCYP719A39) were identified as the key to controlling the regioselectivity of CYP719As affecting the methylenedioxy bridge-formation on the A or D rings by homology modeling and mutation analysis. Furthermore, for de novo production of BIAs, CyCYP719A39, CyCYP719A42, and their mutants were introduced into the (S)-scoulerine-producing yeast to produce 32 mg/L (S)-stylopine. These results lay a foundation for understanding the structure-function relationship of CYP719A-mediated methylenedioxy bridge-formation and provide yeast strains for the BIAs production by synthetic biology.


Assuntos
Alcaloides , Benzilisoquinolinas , Benzilisoquinolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides/metabolismo
5.
Hortic Res ; 9: uhac152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168544

RESUMO

O-methyltransferases play essential roles in producing structural diversity and improving the biological properties of benzylisoquinoline alkaloids (BIAs) in plants. In this study, Corydalis yanhusuo, a plant used in traditional Chinese medicine due to the analgesic effects of its BIA-active compounds, was employed to analyze the catalytic characteristics of O-methyltransferases in the formation of BIA diversity. Seven genes encoding O-methyltransferases were cloned, and functionally characterized using seven potential BIA substrates. Specifically, an O-methyltransferase (CyOMT2) with highly efficient catalytic activity of both 4'- and 6-O-methylations of 1-BIAs was found. CyOMT6 was found to perform two sequential methylations at both 9- and 2-positions of the essential intermediate of tetrahydroprotoberberines, (S)-scoulerine. Two O-methyltransferases (CyOMT5 and CyOMT7) with wide substrate promiscuity were found, with the 2-position of tetrahydroprotoberberines as the preferential catalytic site for CyOMT5 (named scoulerine 2-O-methyltransferase) and the 6-position of 1-BIAs as the preferential site for CyOMT7. In addition, results of integrated phylogenetic molecular docking analysis and site-directed mutation suggested that residues at sites 172, 306, 313, and 314 in CyOMT5 are important for enzyme promiscuity related to O-methylations at the 6- and 7-positions of isoquinoline. Cys at site 253 in CyOMT2 was proved to promote the methylation activity of the 6-position and to expand substrate scopes. This work provides insight into O-methyltransferases in producing BIA diversity in C. yanhusuo and genetic elements for producing BIAs by metabolic engineering and synthetic biology.

6.
Hortic Res ; 9: uhac140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072835

RESUMO

Isatis indigotica accumulates several active substances, including C-glycosylflavonoids, which have important pharmacological activities and health benefits. However, enzymes catalyzing the methylation step of C-glycosylflavonoids in I. indigotica remain unknown. In this study, three O-methyltransferases (OMTs) were identified from I. indigotica that have the capacity for O-methylation of the C-glycosylflavonoid isoorientin. The Type II OMTs IiOMT1 and IiOMT2 efficiently catalyze isoorientin to form isoscoparin, and decorate one of the aromatic vicinal hydroxyl groups on flavones and methylate the C6, C8, and 3'-hydroxyl positions to form oroxylin A, wogonin, and chrysoeriol, respectively. However, the Type I OMT IiOMT3 exhibited broader substrate promiscuity and methylated the C7 and 3'-hydroxyl positions of flavonoids. Further site-directed mutagenesis studies demonstrated that five amino acids of IiOMT1/IiOMT2 (D121/D100, D173/D149, A174/A150R, N200/N176, and D248/D233) were critical residues for their catalytic activity. Additionally, only transient overexpression of Type II OMTs IiOMT1 and IiOMT2 in Nicotiana benthamiana significantly increased isoscoparin accumulation, indicating that the Type II OMTs IiOMT1 and IiOMT2 could catalyze the methylation step of C-glycosylflavonoid, isoorientin at the 3'-hydroxyl position. This study provides insights into the biosynthesis of methylated C-glycosylflavonoids, and IiOMTs could be promising catalysts in the synthesis of bioactive compounds.

7.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4347-4357, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046861

RESUMO

Paeoniflorin, a representative pinane monoterpene glycoside, is the main active component and quality index of Paeoniae Radix Alba and Paeoniae Radix Rubra.The possible biosynthesis of paeoniflorin is as follows: GPP is derived from mevalonate(MVA) and/or 2-C-methyl-D-erythritol 4-phosphate(MEP) pathway(s) followed by the catalysis with terpene synthase, cytochrome P450(CYP450), UDP-glucuronosyltransferase(UGT), and acyltransferase(AT), respectively.This study aims to explore the genes rela-ted to the biosynthesis of paeoniflorin.To be specific, the cDNA libraries for flowers, leaves, and roots of Paeonia lactiflora were established and sequenced.A total of 30 609 open reading frames(ORFs) were yielded.Through functional annotation and expression analysis of all CYP450 genes in the transcriptome, 11 CYP450 genes belonging to CYP71 A and CYP71 D subfamilies and showing expression trend consistent with monoterpene synthase PlPIN that may be involved in paeoniflorin biosynthesis were screened out.Subsequently, 7 UGT genes and 9 AT genes demonstrating the expression trend consistent with PlPIN which were possibly involved in paeoniflorin biosynthesis were further screened by functional annotation analysis, full-length sequence analysis, expression analysis, and phylogeny analysis.This study provided a systematic screening method with smaller number of candidate genes, thus reducing the workload of functional gene verification.The result laid a foundation for analyzing the biosynthesis pathway of paeoniflorin and the formation mechanism.


Assuntos
Paeonia , Hidrocarbonetos Aromáticos com Pontes , Perfilação da Expressão Gênica , Glucosídeos/genética , Glucosídeos/metabolismo , Monoterpenos/metabolismo , Paeonia/genética
8.
Front Plant Sci ; 13: 947674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873989

RESUMO

Salvia miltiorrhiza is one of the most commonly used Chinese medicinal herbs. Tanshinones, the most abundant lipid-soluble bioactive constituents of S. miltiorrhiza, are a class of structural highly oxidized abietane-type diterpenoids with multiple pharmacological activities. Although several enzymes, including diterpene synthase, cytochrome P450, and Fe(II)/2-oxoglutarate-dependent dioxygenase (2OGD), have been functionally characterized in biosynthesis of abietane-type diterpenoids, the highly oxidized structure and complex secondary metabolic network of tanshinones imply that more oxidases should be characterized. Here, we identified a new 2OGD (Sm2OGD25) from S. miltiorrhiza. Molecular cloning and functional studies in vitro showed that Sm2OGD25 could catalyze the hydroxylation of sugiol at C-15 and C-16 positions to produce hypargenin B and crossogumerin C, respectively. The phylogenetic analysis of the DOXC family demonstrated that Sm2OGD25 belongs to the DOXC54 clade. Furthermore, structural modeling and site-directed mutagenesis characterization revealed the importance of the hydrogen-bonding residue Y339 and the hydrophobic residues (V122, F129, A144, A208, F303, and L344) in substrate binding and enzyme activity. This study will promote further studies on the catalytic characterization of plant 2OGDs and the secondary metabolic biosynthesis network of diterpenoids.

9.
Plant Physiol Biochem ; 168: 507-515, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34757301

RESUMO

Benzylisoquinoline alkaloids (BIAs) are compounds naturally found in plants and can have significant value in clinical settings. Metabolic engineering and synthetic biology are both promising approaches for the heterologous acquisition of benzylisoquinoline alkaloids. (S)-N-methylcoclaurine 3'-hydroxylase (NMCH), a member of the CYP80 family of CYP450, is the penultimate catalytic enzyme that forms the central branch-point intermediate (S)-reticuline and plays a key role in the biosynthesis of BIAs. In this study, an NMCH gene was cloned from Corydalis yanhusuo, while in vitro reactions demonstrated that CyNMCH can catalyze (S)-N-methylcoclaurine to produce (S)-3'-hydroxy-N-methylcoclaurine. The Km and Kcat of CyNMCH were estimated and compared with those identified in Eschscholzia californica and Coptis japonica. This newly discovered CyNMCH will provide alternative genetic resources for the synthetic biological production of benzylisoquinoline alkaloids and provides a foundation to help analyze the biosynthetic pathway of BIAs biosynthesis in C. yanhusuo.


Assuntos
Alcaloides , Benzilisoquinolinas , Corydalis , Coptis , Sistema Enzimático do Citocromo P-450 , Proteínas de Plantas
10.
ACS Synth Biol ; 9(7): 1763-1770, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32551504

RESUMO

Cytochrome P450s (CYPs) are important enzymes in the secondary metabolism of plants and have been recognized as key players in bioengineering and synthetic biology. Previously reported CYP76AH1 and CYP76AH3, having greater than 80% sequence homology, played a continuous catalytic role in the biosynthesis of tanshinones in Salvia miltiorrhiza. Homology modeling indicates that four sites might be responsible for differences in catalytic activity between the two enzymes. A series of modeling-based mutational variants of CYP76AH1 were designed to integrate the functions of the two CYPs. The mutant CYP76AH1D301E,V479F, which integrated the functions of CYP76AH1 and CYP76AH3, was found to efficiently catalyze C11 and C12 hydroxylation and C7 oxidation of miltiradiene substrates. Integration and utilization of CYP76AH1D301E,V479F by synthetic biology methods allowed the robust production of 11-hydroxy ferruginol, sugiol, and 11-hydroxy sugiol in yeast. The functionally integrated CYP gene after active site modifications improves catalytic efficiency by reducing the transfer of intermediate metabolites between component proteins. This provides a synthetic biology reference for improving the catalytic efficiencies of systems that produce plant natural products in microorganisms.


Assuntos
Abietanos/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Diterpenos/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Salvia miltiorrhiza/enzimologia , Salvia miltiorrhiza/genética , Abietanos/síntese química , Catálise , Domínio Catalítico/genética , Sistema Enzimático do Citocromo P-450/química , Diterpenos/síntese química , Engenharia Metabólica/métodos , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodos
11.
J Plant Physiol ; 250: 153181, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32460036

RESUMO

Tetrandrine is the most effective small molecule that has been found to inhibit the Ebola virus. It is a typical bisbenzylisoquinoline alkaloid and is the main active ingredient in Stephania tetrandra. Metabolic engineering and synthetic biology are potential methods for efficient and rapid acquisition of tetrandrine. S-adenosyl-L-methionine: (S)-norcoclaurine-6-O-methyltransferase (6OMT) is a rate-limiting step involved in the biosynthesis of tetrandrine. In this study, we identify S-adenosyl-L-methionine: (S)-norcoclaurine-6-O-methyltransferase from S. tetrandra, which catalyzes the conversion of (S)-norcoclaurine to (S)-coclaurine. Four 6OMT-like genes were cloned from S. tetrandra. An in vitro enzyme assay showed that St6OMT1 could catalyze the conversion of (S)-norcoclaurine to produce (S)-coclaurine. St6OMT2 can catalyze the production of very few (S)-coclaurine molecules, accompanied by more by-products with m/z 300, compared to St6OMT1. The newly discovered 6OMTs will provide an optional genetic component for benzylisoquinoline alkaloid (BIA) synthetic biology research. This work will lay the foundation for the analysis of the biosynthetic pathway of tetrandrine in S. tetrandra.


Assuntos
Antivirais/metabolismo , Benzilisoquinolinas/metabolismo , Metiltransferases/genética , Proteínas de Plantas/genética , Stephania tetrandra/genética , Sequência de Aminoácidos , Metiltransferases/química , Metiltransferases/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Stephania tetrandra/enzimologia , Stephania tetrandra/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 44(5): 927-934, 2019 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-30989851

RESUMO

The dynamic accumulation rule of active substances in medicinal plants is of great value not only for medicinal material production and application,but also for the genetic mechanism study on the formation of medicinal ingredients,especially vital to guide medicinal material collection as well as experiment material selection and candidate gene screening in the analysis of biosynthesis pathway. This study investigated the accumulation of curcumins and terpenoids,and the biosynthesis of these metabolites,which are the active metabolites in Curcuma longa,a commonly used traditional Chinese medicine. Rhizoma of C. longa from leaf growing period,rhizome swelling period and dry matter accumulating period were used as experimental materials,to analyze the changes of metabolites and biosynthesis in the three periods by comparative transcriptome and metabolomes analysis.The results indicated that terpenoids accumulation and biosynthesis mainly occurred in leaf growing period,while curcumin accumulation and biosynthesis mainly occurred in dry matter accumulating period. Therefore,we suggested that turmeric rhizomes in leaf growth period were suitable for terpenoids biosynthetic pathway characterization,and rhizome in accumulation of dry matter period was suitable for curcuminoid biosynthesis pathway characterization. This study provides references for medicinal materialproduction and application,as well as biopathway analysis of active compounds for C. longa.


Assuntos
Curcuma/química , Curcumina/análise , Rizoma/química , Terpenos/análise , Compostos Fitoquímicos/análise , Plantas Medicinais/química
13.
Molecules ; 23(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424547

RESUMO

Scutellaria barbata (Lamiaceae) is an important medicinal herb widely used in China, Korea, India, and other Asian countries. Neo-clerodane diterpenoids are the largest known group of Scutellaria diterpenoids and show promising cytotoxic activity against several cancer cell lines. Here, Illumina-based deep transcriptome analysis of flowers, the aerial parts (leaf and stem), and roots of S. barbata was used to explore terpenoid-related genes. In total, 121,958,564 clean RNA-sequence reads were assembled into 88,980 transcripts, with an average length of 1370 nt and N50 length of 2144 nt, indicating high assembly quality. We identified nearly all known terpenoid-related genes (33 genes) involved in biosynthesis of the terpenoid backbone and 14 terpene synthase genes which generate skeletons for different terpenoids. Three full length diterpene synthase genes were functionally identified using an in vitro assay. SbTPS8 and SbTPS9 were identified as normal-CPP and ent-CPP synthase, respectively. SbTPS12 reacts with SbTPS8 to produce miltiradiene. Furthermore, SbTPS12 was proven to be a less promiscuous class I diterpene synthase. These results give a comprehensive understanding of the terpenoid biosynthesis in S. barbata and provide useful information for enhancing the production of bioactive neo-clerodane diterpenoids through genetic engineering.


Assuntos
Alquil e Aril Transferases/genética , Diterpenos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Scutellaria/genética , Scutellaria/metabolismo , Transcriptoma , Alquil e Aril Transferases/metabolismo , Biologia Computacional/métodos , Diterpenos/química , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Filogenia , Scutellaria/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...